Skip to main content
Log in

Surface modification of electrospun poly(L-lactide-co-ɛ-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells

  • Articles
  • Published:
Macromolecular Research Aims and scope Submit manuscript

Abstract

Regulation of cell-material interactions is an important factor for modulating the cell function in many tissue engineering applications. A more attractive strategy for enhancing the cell-material interactions is to mimic the physical and chemical features of the native extracellular matrix (ECM). The main goal of this study was to develop ECM-like substrates that can control the cell-material interactions including adhesion, spreading, proliferation and differentiation. Poly(L-lactide-co-ɛ-caprolactone) (PLCL) fibrous meshes were fabricated using electrospinning. The meshes were functionalized with acrylic acid (AAc) using γ-ray irradiation, and Arg-Gly-Asp (RGD)-containing peptide was immobilized on the resulting mesh as a cell adhesive ligand. The adhesion and proliferation of the MC3T3-E1 pre-osteoblastic cells grown on the RGD-AAc-PLCL fibrous meshes were greater than those of the cells grown on the other fibrous meshes for up to 7 days. In addition, mature formation of F-actin stress fibers and focal adhesion (co-localized with vinculin) was only observed on the RGD-AAc-PLCL meshes. Moreover, the ALP activity and calcium content on the RGD-AAc-PLCL meshes were approximately 7.5 and 6.7 times higher than those on the other meshes, respectively. In addition, the expression of selected osteogenic genes, Cbfa1, ALP, and OCN, was significantly up-regulated (at least 5 to 9.7 times greater) on the RGD-AAc-PLCL meshes. This suggests that peptide-modified fibrous meshes eliciting desirable cellular responses may provide a useful tool for many tissue engineering applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. G. Attiah, R. A. Kopher, and T. A. Desai, J. Mater. Sci.-Mater. M, 14, 1005 (2003).

    Article  CAS  Google Scholar 

  2. J. E. Naugle, E. R. Olson, X. J. Zhang, S. E. Mase, C. F. Pilati, M. B. Maron, H. G. Folkesson, W. I. Horne, K. J. Doane, and J. G. Meszaros, Am. J. Physiol-Heart. C, 290, H323 (2006).

    Article  CAS  Google Scholar 

  3. M. J. Tabata, T. Matsumura, T. Fujii, M. Abe, and K. Kurisu, J. Histochem. Cytochem., 51, 1673 (2003).

    CAS  Google Scholar 

  4. Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    Article  CAS  Google Scholar 

  5. I. Jun, S. Jeong, and H. Shin, Biomaterials, 30, 2038 (2009).

    Article  CAS  Google Scholar 

  6. S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, Biomed. Mater., 1, R45 (2006).

    Article  CAS  Google Scholar 

  7. C. H. Lee, H. J. Shin, I. H. Cho, Y. M. Kang, I. A. Kim, K. D. Park, and J. W. Shin, Biomaterials, 26, 1261 (2005).

    Article  CAS  Google Scholar 

  8. A. S. Badami, M. R. Kreke, M. S. Thompson, J. S. Riffle, and A. S. Goldstein, Biomaterials, 27, 596 (2006).

    Article  CAS  Google Scholar 

  9. G. T. Christopherson, H. Song, and H. Q. Mao, Biomaterials, 30, 556 (2009).

    Article  CAS  Google Scholar 

  10. X. M. Mo, C. Y. Xu, M. Kotaki, and S. Ramakrishna, Biomaterials, 25, 1883 (2004).

    Article  CAS  Google Scholar 

  11. X. Zong, H. Bien, C. Y. Chung, L. Yin, D. Fang, B. S. Hsiao, B. Chu, and E. Entcheva, Biomaterials, 26, 5330 (2005).

    Article  CAS  Google Scholar 

  12. X. Xin, M. Hussain, and J. J. Mao, Biomaterials, 28, 316 (2007).

    Article  CAS  Google Scholar 

  13. W. Meng, S. Y. Kim, J. Yuan, J. C. Kim, O. H. Kwon, N. Kawazoe, G. Chen, Y. Ito, and I. K. Kang, J. Biomater. Sci. Polym. Ed., 18, 81 (2007).

    Article  Google Scholar 

  14. L. Ghasemi-Mobarakeh, M. P. Prabhakaran, M. Morshed, M. H. Nasr-Esfahani, and S. Ramakrishna, Biomaterials, 29, 4532 (2008).

    Article  CAS  Google Scholar 

  15. H. Park, K. Y. Lee, S. J. Lee, K. E. Park, and W. H. Park, Macromol. Res., 15, 238 (2007).

    CAS  Google Scholar 

  16. G. Marletta, G. Ciapetti, C. Satriano, S. Pagani, and N. Baldini, Biomaterials, 26, 4793 (2005).

    Article  CAS  Google Scholar 

  17. K. Park, Y. M. Ju, J. S. Son, K. D. Ahn, and D. K. Han, J. Biomater. Sci. Polym. Ed., 18, 369 (2007).

    Article  CAS  Google Scholar 

  18. W. S. Choi, J. W. Bae, and Y. K. Joung, Macromol. Res., 17, 458 (2009).

    CAS  Google Scholar 

  19. W. He, Z. Ma, T. Yong, W. E. Teo, and S. Ramakrishna, Biomaterials, 26, 7606 (2005).

    Article  CAS  Google Scholar 

  20. H. W. Jun and J. L. West, J. Biomed. Mater. Res. B, 72, 131 (2005).

    Article  Google Scholar 

  21. B. Li, J. Chen, and J. H. Wang, J. Biomed. Mater. Res. A, 79, 989 (2006).

    Google Scholar 

  22. T. G. Kim and T. G. Park, Tissue Eng., 12, 221 (2006).

    Article  CAS  Google Scholar 

  23. Y. M. Shin, K. S. Kim, Y. M. Lim, Y. C. Nho, and H. Shin, Biomacromolecules, 9, 1772 (2008).

    Article  CAS  Google Scholar 

  24. S. I. Jeong, B. S. Kim, S. W. Kang, J. H. Kwon, Y. M. Lee, S. H. Kim, and Y. H. Kim, Biomaterials, 25, 5939 (2004).

    Article  CAS  Google Scholar 

  25. S. I. Jeong, A. Y. Lee, Y. M. Lee, and H. Shin, J. Biomater. Sci. Polym. Ed., 19, 339 (2008).

    Article  CAS  Google Scholar 

  26. L. Grondahl, A. Chandler-Temple, and M. Trau, Biomacromolecules, 6, 2197 (2005).

    Article  CAS  Google Scholar 

  27. D. Klee, Z. Ademovic, A. Bosserhoff, H. Hoecker, G. Maziolis, and H. J. Erli, Biomaterials, 24, 3663 (2003).

    Article  CAS  Google Scholar 

  28. E. K. Ko, S. I. Jeong, N. G. Rim, Y. M. Lee, H. Shin, and B. K. Lee, Tissue Eng. Part A, 14, 2105 (2008).

    Article  CAS  Google Scholar 

  29. E. K. Ko, S. I. Jeong, J. H. Lee, and H. Shin, Macromol. Biosci., 8, 1098 (2008).

    Article  CAS  Google Scholar 

  30. H. Shin, Biomaterials, 28, 126 (2007).

    Article  CAS  Google Scholar 

  31. L. C. Lopez, R. Gristina, G. Ceccone, F. Rossi, P. Favia, and R. d’Agostino, Surf. Coat. Tech., 200, 1000 (2005).

    Article  CAS  Google Scholar 

  32. C. Chollet, C. Chanseau, M. Remy, A. Guignandon, R. Bareille, C. Labrugere, L. Bordenave, and M.C. Durrieu, Biomaterials, 30, 711 (2009).

    Article  CAS  Google Scholar 

  33. S. Jo, P. S. Engel, and A. G. Mikos, Polymer, 41, 7595 (2000).

    Article  CAS  Google Scholar 

  34. K. Marko, M. Ligeti, G. Mezo, N. Mihala, E. Kutnyanszky, E. Kiss, F. Hudecz, and E. Madarasz, Bioconjug. Chem., 19, 1757 (2008).

    Article  CAS  Google Scholar 

  35. W. E. Teo and S. Ramakrishna, Nanotechnol., 17, R89 (2006).

    Article  CAS  Google Scholar 

  36. M. Y. Li, Y. Guo, Y. Wei, A. G. MacDiarmid, and P. I. Lelkes, Biomaterials, 27, 2705 (2006).

    Article  CAS  Google Scholar 

  37. Y. Liu, J. H. He, J. Y. Yu, and H. M. Zeng, Polym. Int., 57, 632 (2008).

    Article  CAS  Google Scholar 

  38. N. Choktaweesap, K. Arayanarakul, D. Aht-Ong, C. Meechaisue, and P. Supaphol, Polym. J., 39, 622 (2007).

    Article  CAS  Google Scholar 

  39. K. Lin, K. N. Chua, G. T. Christopherson, S. Lim, and H. Q. Mao, Polymer, 48, 6384 (2007).

    Article  CAS  Google Scholar 

  40. J. H. Song, H. E. Kim, and H. W. Kim, J. Mater. Sci.-Mater. M, 19, 95 (2008).

    Article  CAS  Google Scholar 

  41. L. Bacakova, E. Filova, D. Kubies, L. Machova, V. Proks, V. Malinova, V. Lisa, and F. Rypacek, J. Mater. Sci.-Mater. M, 18, 1317 (2007).

    Article  CAS  Google Scholar 

  42. S. Patel, J. Tsang, G. M. Harbers, K. E. Healy, and S. Li, J. Biomed. Mater. Res. A, 83A, 423 (2007).

    Article  CAS  Google Scholar 

  43. B. P. Chan, W. M. Reichert, and G. A. Truskey, Biotechnol. Prog., 20, 566 (2004).

    Article  CAS  Google Scholar 

  44. Y. Z. Feng and M. Mrksich, Biochemistry, 43, 15811 (2004).

    Article  CAS  Google Scholar 

  45. D. S. Hwang, S. B. Sim, and H. J. Cha, Biomaterials, 28, 4039 (2007).

    Article  CAS  Google Scholar 

  46. P. H. Chua, K. G. Neoh, E. T. Kang, and W. Wang, Biomaterials, 29, 1412 (2008).

    Article  CAS  Google Scholar 

  47. A. W. Morgan, K. E. Roskov, S. Lin-Gibson, D. L. Kaplan, M. L. Becker, and C. G. Simon, Biomaterials, 29, 2556 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Heungsoo Shin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Shin, Y.M., Shin, H. & Lim, Y.M. Surface modification of electrospun poly(L-lactide-co-ɛ-caprolactone) fibrous meshes with a RGD peptide for the control of adhesion, proliferation and differentiation of the preosteoblastic cells. Macromol. Res. 18, 472–481 (2010). https://doi.org/10.1007/s13233-010-0507-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13233-010-0507-z

Keywords

Navigation